Sains Malaysiana 54(8)(2025): 2007-2020
http://doi.org/10.17576/jsm-2025-5408-11
Implication of MATE2, OCT2 and ATM Genes
Polymorphism and Their Association with Metformin Efficacy and Glycemic Control
in Type 2 Diabetes Mellitus Patients
(Implikasi Polimorfisme Gen MATE2, OCT2 dan ATM serta Perkaitannya
dengan Keberkesanan Metformin dan Kawalan Glukosa dalam Kalangan Pesakit
Diabetes Mellitus Jenis 2)
MUHAMMAD KASHIF RAZA1,2,3,
AZIZ-UL-HASAN AAMIR4,5, DURR-E- SHAHWAR2, USAMA2,
LAMJED MANSOUR6, ZAHID KHAN2, AKTAR ALI1 &
MUHAMMAD IMRAN2,*
1Warren Center for Drug Discovery Research, Department of
Biochemistry and Chemistry, University of Notre Dame, Indiana 46556, USA
2Biochemistry Section, Institute of Chemical Sciences, University of
Peshawar, Peshawar 25120 KP, Pakistan
3Department of Chemistry, Shaheed Benazir Bhutto University,
Sheringal Dir Upper 18050 KP, Pakistan
4Department of Diabetes and Endocrinology, Hayatabad Medical
Complex, Peshawar 25120 KP, Pakistan
5Department of Endocrinology, Peshawar General Hospital, Peshawar
25120, KP, Pakistan
6Department of Zoology, College of Science, King Saud University,
Riyadh 2455, 11451, Saudi Arabia
Received: 28 January 2025/Accepted: 30
May 2025
Abstract
In
type 2 diabetes mellitus (T2DM) patients, metformin, the drug of choice,
exhibits variable therapeutic response attributed to gene polymorphism. The
current study aimed to investigate the association of MATE2 rs12943590, OCT2
rs7757336, and ATM rs11212617, which are hotspot single-nucleotide
polymorphisms (SNPs), with metformin efficacy and glycemic control in T2DM
patients. A total of 417 study subjects were enrolled, consisting of 217
newly diagnosed and drug-naive T2DM patients, while 200 individuals were
healthy controls. Patients were further divided into two subgroups: metformin
responsive and metformin-non-responsive individuals. Study patients were kept
on exclusive metformin monotherapy for three successive months. Patients' basic
parameters like age, fasting glucose, HbA1c, LDL, HDL, Cholesterol, and BMI
were recorded. Real-time PCR involving melt curve analysis and subsequent
agarose gel electrophoresis with Sanger sequencing was employed for genotype
analysis. MATE2 (SLC47A2)
rs12943590 GA genotype (OR 0.44, CI 95% 0.23-0.86, p = 0.01), OCT2 (SLC22A2) rs7757336 GG genotype (OR 5.82, 95% CI 1.40-24.24, p =
0.01), and G allele (OR 2.21, CI 95% 1.18-4.14, p = 0.01) were
significantly associated with metformin response and glucose-lowering effect.
No significant association (p > 0.05) was observed for ATM rs11212617.
Keywords: Association studies; diabetes mellitus; gene polymorphism; glycemic control;
metformin
Abstrak
Metformin
sebagai ubat pilihan untuk pesakit diabetes mellitus jenis 2 (T2DM) menunjukkan
respons terapeutik yang berbeza-beza yang dikaitkan dengan polimorfisme gen. Penyelidikan
ini bertujuan untuk mengkaji hubungan antara MATE2 rs12943590, OCT2 rs7757336 dan ATM rs11212617 yang merupakan polimorfisme nukleotida
tunggal (SNP) titik panas dan hubungan mereka dengan keberkesanan metformin dan
kawalan glisemik pada pesakit T2DM. Sebanyak 417 individu subjek kajian telah
disertakan, terdiri daripada 217 pesakit T2DM yang baru didiagnosis dan tidak
pernah menjalani rawatan, manakala 200 individu merupakan kumpulan kawalan
sihat. Pesakit dibahagikan kepada dua kumpulan sub, iaitu individu yang
responsif terhadap metformin dan individu yang tidak responsif terhadap
metformin. Pesakit kajian diberikan monoterapi metformin eksklusif selama tiga
bulan berturut-turut. Parameter asas pesakit seperti umur, glukosa puasa,
HbA1c, LDL, HDL, kolesterol dan BMI dicatat. PCR masa nyata yang melibatkan
analisis lengkung lebur dan elektroforesis gel agarosa seterusnya dengan
penjujukan Sanger digunakan untuk analisis genotip. Genotip MATE2 (SLC47A2)
rs12943590 GA (OR 0.44, CI 95% 0.23-0.86, p = 0.01), genotip OCT2 (SLC22A2)
rs7757336 GG (OR 5.82, CI 95% 1.40-24.24, p = 0.01) dan alel G (OR 2.21, CI 95%
1.18-4.14, p = 0.01) didapati secara signifikan berkaitan dengan respons
metformin dan kesan penurunan glukosa. Tiada hubungan signifikan (p >
0.05) yang diperhatikan untuk ATM rs11212617.
Kata
kunci: Diabetes mellitus; kajian hubungan; kawalan glisemik; metformin;
polimorfisme gen
REFERENCES
Al-Eitan, L.N., Almomani, B.A., Nassar, A.M.,
Elsaqa, B.Z. & Saadeh, N.A. 2019. Metformin pharmacogenetics: Effects of
SLC22A1, SLC22A2, and SLC22A3 polymorphisms on glycemic control and HbA1c
levels. Journal of Personalized Medicine 9(1): 17.
Altall, R.M., Qusti, S.Y., Filimban, N., Alhozali,
A.M., Alotaibi, N.A., Dallol, A., Chaudhary, A.G. & Bakhashab, S. 2019. SLC22A1 and ATM genes polymorphisms are associated with the risk of type 2
diabetes mellitus in western Saudi Arabia: A case-control study. The Application of Clinical Genetics 12:
213-219.
Alwan, A. 2011. Global Status Report on Noncommunicable Diseases 2010. World Health
Organization.
Amin, N. 2018. An overview of diabetes mellitus;
types, complications, and management. International
Journal of Nursing Science Practice and Research 4(1): 119-124.
Bailey, C.J. 2024. Metformin: Therapeutic profile
in the treatment of type 2 diabetes. Diabetes,
Obesity and Metabolism 26: 3-19.
Baker, C., Retzik-Stahr, C., Singh, V., Plomondon,
R., Anderson, V. & Rasouli, N. 2021. Should metformin remain the first-line
therapy for treatment of type 2 diabetes? Therapeutic
Advances in Endocrinology and Metabolism 12: 2042018820980225.
Chen, J-X., Geng,
T., Zhang, Y-B., Wang, Y., Li, R., Qiu, Z., Wang, Y., Yang, K., Zhang, B-F.
& Ruan, H-L. 2024. Associations of clinical risk factors and novel
biomarkers with age at onset of type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism 109(1): 321-329.
Choi, J., Yee, S., Ramirez, A., Morrissey, K.,
Jang, G., Joski, P., Mefford, J., Hesselson, S., Schlessinger, A. &
Jenkins, G. 2011. A common 5′‐UTR variant in MATE2‐K is
associated with poor response to metformin. Clinical
Pharmacology & Therapeutics 90(5):
674-684.
Collins, A. & Ke, X. 2012. Primer1: Primer
design web service for tetra-primer ARMS-PCR. The Open Bioinformatics Journal 6: 55-58.
Damanhouri, Z.A., Alkreathy, H.M., Alharbi, F.A.,
Abualhamail, H. & Ahmad, M.S. 2023. A review of the impact of
pharmacogenetics and metabolomics on the efficacy of metformin in type 2 diabetes. International Journal of Medical Sciences 20(1): 142-150.
Damarov, I.S., Korbolina, E.E., Rykova, E.Y. &
Merkulova, T.I. 2024. Multi-omics analysis revealed the rSNPs potentially
involved in T2DM pathogenic mechanism and metformin response. International Journal of Molecular Sciences 25(17): 9297.
Davies, M.J., D’Alessio, D.A., Fradkin, J.,
Kernan, W.N., Mathieu, C., Mingrone, G., Rossing, P., Tsapas, A., Wexler, D.J.
& Buse, J.B. 2018. Management of hyperglycemia in type 2 diabetes, 2018. A
consensus report by the American Diabetes Association (ADA) and the European
Association for the Study of Diabetes (EASD). Diabetes Care 41(12):
2669-2701.
Dong, S., Zhao, N., Spragins, E., Kagda, M.S., Li,
M., Assis, P., Jolanki, O., Luo, Y., Cherry, J.M. & Boyle, A.P. 2023.
Annotating and prioritizing human non-coding variants with RegulomeDB v. 2. Nature Genetics 55(5): 724-726.
Dujic, T., Zhou, K., Yee, S.W., van Leeuwen, N.,
de Keyser, C.E., Javorský, M., Goswami, S., Zaharenko, L., Hougaard
Christensen, M. & Out, M. 2017. Variants in pharmacokinetic transporters
and glycemic response to metformin: A Metgen meta‐analysis. Clinical Pharmacology & Therapeutics 101(6): 763-772.
Foretz, M., Guigas, B. & Viollet, B. 2019.
Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes
mellitus. Nature Reviews Endocrinology 15(10): 569-589.
GoDARTS and UKPDS Diabetes Pharmacogenetics Study
Group; Wellcome Trust Case Control Consortium 2; Zhou, K., Bellenguez, C.,
Spencer, C.C., Bennett, A.J., Coleman, R.L., Tavendale, R., Hawley, S.A.,
Donnelly, L.A., Schofield, C., Groves, C.J., Burch, L., Carr, F., Strange, A.,
Freeman, C., Blackwell, J.M., Bramon, E., Brown, M.A., Casas, J.P., Corvin, A.,
Craddock, N., Deloukas, P., Dronov, S., Duncanson, A., Edkins, S., Gray, E.,
Hunt, S., Jankowski, J., Langford, C., Markus, H.S., Mathew, C.G., Plomin, R.,
Rautanen, A., Sawcer, S.J., Samani, N.J., Trembath, R., Viswanathan, A.C.,
Wood, N.W.; MAGIC investigators; Harries, L.W., Hattersley, A.T., Doney, A.S.,
Colhoun, H., Morris, A.D., Sutherland, C., Hardie, D.G., Peltonen, L.,
McCarthy, M.I., Holman, R.R., Palmer, C.N., Donnelly, P. & Pearson,
E.R. 2011. Common
variants near ATM are associated with glycemic response to metformin in type 2
diabetes. Nat. Genet. 43(2): 117-120.
Guzman-Vilca, W.C.
& Carrillo-Larco, R.M. 2025. Number of people with type 2 diabetes mellitus
in 2035 and 2050: A modelling study in 188 countries. Current Diabetes Reviews 21(1):
E120124225603.
Hakim, Z., ul Hasan, N., Khan, A. & Waheed, A.
2024. Association of genetic polymorphism rs 77630697 (Gly64Asp) of multidrug
and toxin extrusion-1 with glycemic response to metformin in patients with type
2 diabetes mellitus. Pakistan Journal of
Medical Sciences 40(6):
1256-1260.
Harries, L.W., Hattersley, A.T., Doney, A.S.,
Colhoun, H., Morris, A.D., Sutherland, C., Hardie, D.G., Peltonen, L. &
McCarthy, M.I. 2011. Common variants near ATM are associated with glycemic
response to metformin in type 2 diabetes. Nature
Genetics 43(2): 117-120.
Ito, S., Kusuhara, H., Yokochi, M., Toyoshima, J.,
Inoue, K., Yuasa, H. & Sugiyama, Y. 2012. Competitive inhibition of the
luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by
organic cation transporter 2, is the likely mechanism underlying the
pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. Journal of Pharmacology and Experimental
Therapeutics 340(2):
393-403.
Jensen, J.B., Sundelin, E.I., Jakobsen, S.,
Gormsen, L.C., Munk, O.L., Frøkiær, J. & Jessen, N. 2016. [11C]-Labeled
metformin distribution in the liver and small intestine using dynamic positron
emission tomography in mice demonstrates tissue-specific transporter
dependency. Diabetes 65(6): 1724-1730.
Kajiwara, M., Terada, T., Ogasawara, K., Iwano,
J., Katsura, T., Fukatsu, A. & Inui, K-I. 2009. Identification of multidrug
and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of
transport activity. Journal of Human
Genetics 54(1): 40-46.
Kuhlmann, I., Arnspang Pedersen, S., Skov Esbech,
P., Bjerregaard Stage, T., Hougaard Christensen, M.M. & Brøsen, K. 2021.
Using a limited sampling strategy to investigate the interindividual
pharmacokinetic variability in metformin: A large prospective trial. British Journal of Clinical Pharmacology 87(4): 1963-1969.
Lemeshow, S., Hosmer, D.W., Klar, J., Lwanga, S.K.
& Organization, W.H. 1990. Adequacy of Sample Size in Health Studies.
Chichester: Wiley.
Liang, X. & Giacomini, K.M. 2017. Transporters
involved in metformin pharmacokinetics and treatment response. Journal of Pharmaceutical Sciences 106(9): 2245-2250.
Lv, Z. & Guo, Y. 2020. Metformin and its
benefits for various diseases. Frontiers
in Endocrinology 11: 191.
Mahrooz, A., Parsanasab, H., Hashemi-Soteh, M.B.,
Kashi, Z., Bahar, A., Alizadeh, A. & Mozayeni, M. 2015. The role of
clinical response to metformin in patients newly diagnosed with type 2
diabetes: A monotherapy study. Clinical
and Experimental Medicine 15:
159-165.
Mohammadi Jouabadi, S., Peymani, P., Nekouei
Shahraki, M., van Rooij, J.G., Broer, L., Roks, A.J., Stricker, B.H. &
Ahmadizar, F. 2024. Effects and interaction of single nucleotide polymorphisms
at the pharmacokinetic/pharmacodynamic site: Insights from the Rotterdam study
into metformin clinical response and dose titration. The Pharmacogenomics Journal 24(6):
31.
Naesa, H. & Joujeh, D. 2024. The glucoregulatory
mechanisms, pharmacokinetics and pharmacogenetics of metformin in type 2
diabetes mellitus. Journal of Advanced
Pharmacy Research 8(2): 93-106.
Peng, A., Gong, C., Xu, Y., Liang, X., Chen, X.,
Hong, W. & Yan, J. 2023. Association between organic cation transporter
genetic polymorphisms and metformin response and intolerance in T2DM
individuals: A systematic review and meta-analysis. Frontiers in Public Health 11:
1183879.
Pradana, A., Kristin, E., Nugrahaningsih, D.,
Nugroho, A. & Pinzon, R. 2024. Influence of Solute Carrier Family 22 Member
1 (SLC22A1) gene polymorphism on metformin pharmacokinetics and HbA1c levels:
A systematic review. Current Diabetes
Reviews 20(4): 62-74.
Saeedi, P., Petersohn, I., Salpea, P., Malanda,
B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A.A. &
Ogurtsova, K. 2019. Global and regional diabetes prevalence estimates for 2019
and projections for 2030 and 2045: Results from the International Diabetes
Federation Diabetes Atlas. Diabetes Research
and Clinical Practice 157:
107843.
Saiz-Rodríguez, M., Ochoa, D., Zubiaur, P.,
Navares-Gómez, M., Román, M., Camargo-Mamani, P., Luquero-Bueno, S.,
Villapalos-García, G., Alcaraz, R., Mejía-Abril, G., Santos-Mazo, E.
& Abad-Santos, F. 2023. Identification of transporter polymorphisms
influencing metformin pharmacokinetics in healthy volunteers. Journal of Personalized Medicine 13(3): 489.
Shokri, F., Ghaedi, H., Fard, S.G., Movafagh, A.,
Abediankenari, S., Mahrooz, A., Kashi, Z., & Omrani, M.D. 2016. Impact of
ATM and SLC22A1 polymorphisms on therapeutic response to metformin in Iranian
diabetic patients. International Journal
of Molecular and Cellular Medicine 5(1):
1-7.
Strom, J.L. & Egede, L.E. 2012. The impact of
social support on outcomes in adult patients with type 2 diabetes: A systematic
review. Current Diabetes Reports 12: 769-781.
Umamaheswaran, G., Praveen, R.G., Damodaran, S.E.,
Das, A.K. & Adithan, C. 2015. Influence of SLC22A1 rs622342 genetic
polymorphism on metformin response in South Indian type 2 diabetes mellitus
patients. Clinical and Experimental
Medicine 15: 511-517.
Van Dooren, F.E., Nefs, G., Schram, M.T., Verhey,
F.R., Denollet, J. & Pouwer, F. 2013. Depression and risk of mortality in
people with diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 8(3): e57058.
Vilvanathan, S., Gurusamy, U., Mukta, V., Das, A.
K., & Chandrasekaran, A. 2014. Allele and genotype frequency of a genetic
variant in ataxia telangiectasia mutated gene affecting glycemic response to
metformin in South Indian population. Indian
Journal of Endocrinology and Metabolism 18(6): 850-854.
Zaharenko, L., Kalnina, I., Geldnere, K., Konrade,
I., Grinberga, S., Židzik, J., Javorský, M., Lejnieks, A., Nikitina-Zake, L.
& Fridmanis, D. 2016. Single nucleotide polymorphisms in the intergenic
region between metformin transporter OCT2 and OCT3 coding genes are associated
with short-term response to metformin monotherapy in type 2 diabetes mellitus
patients. European Journal of
Endocrinology 175(6):
531-540.
Zhou, K., Yee, S.W., Seiser, E.L., Van Leeuwen,
N., Tavendale, R., Bennett, A.J., Groves, C.J., Coleman, R.L., Van Der Heijden,
A.A. & Beulens, J.W. 2016. Variation in the glucose transporter gene SLC2A2
is associated with glycemic response to metformin. Nature Genetics 48(9):
1055-1059.
Zhou, Y., Guo, Y., Ye, W., Wang, Y., Li, X., Tian,
Y., Liu, Z., Li, S. & Yan, J. 2014. RS11212617 is associated with metformin
treatment response in type 2 diabetes in Shanghai local Chinese population. International Journal of Clinical Practice 68(12): 1462-1466.
*Corresponding
author; email: imrancl@uop.edu.pk